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Abstract

The transition to green energy grids depends, in part, on detailed wind forecasts
to optimize the siting and scheduling of renewable energy generation. Opera-
tional forecasts from numerical weather prediction (NWP) models, however, only
have a spatial resolution of 10 to 20-km, which leads to sub-optimal usage and
development of wind turbine farms. Weather scientists have been developing
super-resolution (SR) methods to increase the resolution of NWP outputs, but
often rely on simple interpolation techniques or computationally expensive differ-
ential equation-based models. Recently, machine learning approaches, specifically
diffusion models, have outperformed traditional and state-of-the-art downscaling
methods. WiREDiff is a novel application of diffusion models to wind speed SR
which makes use of quantile regression to computationally-efficiently produce and
average an interval of predicted wind velocities. We provide a benchmark of tradi-
tional deep learning-based SR techniques on wind data fields, and demonstrate that
diffusion models—and the WiREDiff in particular—have significant applications
in climate scenarios.

1 Introduction
In the United States, the national Energy Information Administration (EIA) predicts that renewable
energy, such as wind power, will contribute 42% of the country’s electricity generation by 2050 (1).
To achieve this goal, operational decision-makers must integrate forecasting models into local power
systems to address the spatial variability of these clean energy forms. However, current climate simu-
lations used to obtain high-resolution data are unable to resolve the spatial characteristics necessary
for accurate future local energy assessments, as increasing their spatial resolution is computationally
expensive and provides insufficient accuracy (2). NWPs provide short-term climatological forecasting
data (i.e. wind speed fields) at a horizontal resolution of 10 to 20-km (3; 4), while energy planning
requires this data at a smaller, more local scale, on the order of 2-km (5).

In the field of computer vision, researchers enhance the resolution of a data field through single-image
super-resolution (SR) (6). However, this problem is inherently ill-posed—coarsened low-resolution
(LR) input data can map to infinitely many high-resolution (HR) outputs. Machine learning-based
approaches offer accurate and less expensive methods of generating the high-resolution data needed
to predict the effect atmospheric dynamics have on power generation (7; 8; 9).

2 Related Work

In the context of super-resolving physics-related data, traditional convolutional neural networks
(CNNs) have been shown to be successful at high fidelity SR (10; 11). Fukami et al. used the SRCNN
network structure to super-resolve 2D laminar cylinder flow (12), and the MeshfreeFlowNet used a
U-Net structure to reconstruct the Rayleigh-Bénard instability (13).
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Figure 1: The problem of SR is inherently ill-posed, because infinitely many high-resolution data fields can look
identical once you coarsen them to a lower-resolution.

Diffusion models, originally proposed in 2015, have seen an increase in interest due to their training
stability and their promising sample quality results in generative tasks (14). Thus, they offer poten-
tially favorable trade-offs compared to other types of deep generative models. Diffusion models work
by corrupting the training data by progressively adding Gaussian noise, slowly wiping out details in
the data until it becomes pure noise, and then training a neural network to reverse this corruption
process. Running this reversed corruption process synthesizes data from pure noise by gradually
denoising it until a clean sample is produced. This synthesis procedure can be interpreted as an
optimization algorithm that follows the gradient of the data density to produce likely samples (15; 16).
The notion of generating data using diffusion techniques originates from the concepts in physics,
more specifically non-equilibrium thermodynamics, which deals with the compression and spread of
fluids and gases based on energy (17; 18). This motivates the application of diffusion-based methods
to wind speed prediction.

As a stochastic process, diffusion-based methods can produce a wide distribution of potential SR
outputs. Therefore, these models do not provide a way of statistically guaranteeing the degree of
confidence they have in their generated results. In the context of renewable energy integration, it is
important for infrastructural planners and policy-makers to be able to trust that the high resolution
wind speed predictions generated by the latent diffusion model are true to reality. To this end, we can
make use of quantile regression construct an pixel-wise interval around each generated pixel such
that the true wind speed value corresponding to that pixel lies within the interval with a probability
set by the user (19; 20; 21). This approach is far more computationally-efficient than the naive
sampling method, in which each test image needs multiple sampled variations and each diffusion
model inference step requires iterative denoising steps.

Thus, in this work we contribute: (1) a novel application of state-of-the-art diffusion-based SR
techniques to a specific task from the physical sciences and (2) an implementation of quantile
regression methodologies to produce SR outputs within a tighter interval of predicted wind speeds.

3 Methods
In the following sections, we describe the WiREDiff approach, the wind speed dataset we evaluate it
on, and the models we compare it to.

3.1 Approach
Towards our first objective, the WiREDiff produces SR outputs using the approach of the known
diffusion model SR3 (22). As depicted in Figure 2, we use a T-step diffusion model which contains
a forward process and a reverse process. Residual predictions guide the model by inferring the
difference between ground truth HR data field and upsampled outputs, denoted by the input residual
data field x0. In the forward process, the posterior q(x1, · · · , xT |x0) converts the data distribution
q(x0) to the latent variable distribution q(xT ) through a Markov chain which gradually adds isotropic
Gaussian noise ϵ ∼ N (0, I). The reverse process, determined by the conditional noise predictor ϵθ,
transforms the latent variable distribution pθ(xT ) to the data distribution pθ(x0). Taking the latent
variable xT as input, we iteratively denoise in finite step T using ϵθ to produce a residual data xr. We
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then add these residual values in xr to the upsampled LR data field to generate the final SR output.
As with SR3, the architectures of the conditional noise predictor and LR encoder and the training and
inference procedures in WiREDiff are the same as those proposed in SRDiff (14).

xT xt xt-1
x0

pθ(xt-1 | xt)

q(xt | xt-1)

Figure 2: Overview of two processes in WiREDiff. The diffusion process is from right to left and the reverse
process is left from left to right. θ in pθ denotes the learnable components including conditional noise predictor
and low-resolution encoder in the WiREDiff.

After pre-training the WiREDiff, we obtain a SR3 model which is capable of producing SR outputs
given an LR input. The lower and upper bounds of the SR3 outputs are approximated using quantile
regression (QR). We can adjust the model from the SR outputs that the SR3 produces by minimizing
the quantile loss for a quantile α which is given in Equation 1.

L = Lα/2(l̃(x), y) + L1−α/2(ũ(x), y) + Lmse(x, y) (1)

where the quantile loss for a particular quantile estimator q̂α(x) is shown below (21)

Lα(q̂α(x), y) = (y − q̂α(x))α1{y > q̂α(x)}+ (q̂α(x)− y)(1− α){y ≤ q̂α(x)} (2)

Since we require ũ and l̃ to estimate different quantiles, the quantile loss becomes (21)

LQR(x, y) = Lα/2(l̃(x), y) + L1−α/2(ũ(x), y), (3)

and the final objective combines the quantile loss for bound estimation with L1 for pointwise
prediction:

L(x, y) = LQR(x, y) + L1. (4)

The quantile regression provides us with the ũ and l̃ that approximate the 1− α/2 and α quantiles,
respectively. We then calibrate these values to produce û and l̂.

For some calibration set {xi, yi}Ni=1 where xi are the matrices of size M ×N of the corrupted images
and yi are the matrices of size M ×N of the target images. During calibration, we are interested in
value λ such that the number of pixels falling outside the interval [λl̃, λũ] is below α. In other words,
we want to solve Equation 5 to determine the calibration constant λ̂ (21).

λ̂ = argmin
λ

1−
∣∣{(m,n)} : y(m,n) ∈ [l̂(ximn

), û(ximn
)](m,n)

∣∣
MN

(5)

This process of finetuning the SR3 model is called the Narrow Conffusion (N-Conffusion) model. This
is a powerful tool as we can utilize the pre-trained SR3 model outputs for quantile regression, and it
separates the model from the computationally expensive process of diffusion (21). After acquiring the
lower and upper bounds from N-Conffusion, we then average the bounds to produce the outputs in the
test set for the WiREDiff model. Thus, the WiREDiff performs the SR task by applying conformal
prediction intermediately, taking an LR data field as input and generating an HR data field that is the
mean of the calibrated upper and lower bounds of the output.
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Figure 3: The LR and HR pairs from the wind dataset, with the coarsened data being downsampled by a factor
of 5.

3.2 Data
Wind fields will be obtained from the National Renewable Energy Laboratory’s (NREL’s) Wind
Integration National Database (WIND) Toolkit, with a focus on the continental United States (23; 24).
The wind velocity data is comprised of westward (ua) and southward (va) components, calculated
from wind speeds and directions 100-m from Earth’s surface (25; 26). The WIND Toolkit has a
spatial resolution of 2km × 1hr spatiotemporal resolution (25; 26). The training dataset will contain
wind fields sampled at a 4-hourly temporal resolution (every fourth data point) between 2007 and
2013. Wind test data will be sampled at a 4-hourly temporal resolution for 2014. Information about
the dataset is summarized in Table 1. All 20 TB of relevant data is publicly available for download
(23; 24). Data files are available as .NPY files, where each file contains two 100×100 data arrays
of ua and va wind speed components. Low resolution data will be generated by applying bilinear
interpolation on the 100× 100 HR patches to create 20×20 patches. Examples of LR and HR data
fields for the wind dataset are visualized in the Figure 3.

Data Wind
Institute NREL
Model WIND Toolkit
Spatial Resolution 2 km
Temporal Resolution 4-hr
Years 2007-2014
HR Dimensions 100×100
LR Dimensions 20×20

Table 1: Wind dataset specifications

3.3 Experiments
Our goal is to examine the ability of standard SR diffusion models to perform 5× spatial super-
resolution, e.g., 10-km to 2-km spatial resolution, on wind data fields. We will compare the perfor-
mance of the WiREDiff against the SR3 and SRCNN (27), with bicubic interpolation included as a
baseline for comparison. The SR3 (which is also in the WiREDiff) and SRCNN have previously only
been applied to image data, so we modified the data ingestion pipeline of existing implementations to
handle raw wind speed arrays of shape (2, H, W) as opposed to RGB images of shape (3, H, W). Note
that the difference in the number of channels in the raw data is due to the concatenation of 2D wind
fields for both the ua and va directions as opposed to the RGB channels in image data. To generate an
output that’s most representative of the data distribution for the SR3, we run the diffusion model for
an arbitrarily large number of repetitions (chosen to be 500), and report the pixel-wise average across
all samples as the final SR data field. Note that we do not run inference on the WiREDiff multiple
times, since we approximate the data distribution by averaging the upper and lower bounds produced
by the N-Conffusion approach.
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4 Results
We first apply Conffusion to generate lower and upper bounds for the generated SR outputs, and then
demonstrate how averaging across this interval to produce WiREDiff SR outputs compares against
the benchmarking models outlined in Section 3.3.

4.1 Interval Prediction
First, we applied the naive method of interval construction: we passed the LR data from the test
set as input to the SR3 to generate a distribution of potential SR outputs, and found the pixel-wise
lower and upper bounds of these data fields (where α = 0.1). Then, we ran a single forward pass of
the fine-tuned N-Conffusion model to generate a calibrated upper and lower bound for each output.
Figure 4 shows an example of how the interval size decreases when applying the Conffusion approach
to wind speed data.

Lower Bound Upper Bound

Ground Truth

Interval Size

(a)

(b)

Figure 4: A comparison of two interval construction approaches: (a) the naive method and (b) Conffusion.
Conffusion results in a tighter interval.

This validates the results demonstrated by Horwitz and Hoshen, as the Conffusion approach yields
tighter bounds than the naive approach (21). As in the Conffusion paper, we set α = 0.1. With the
sample above, we achieve a coverage rate of 0.891 with N-Conffusion, which reasonably approximates
1− α. This as an improvement from the coverage rate with the naive approach, 0.882. This appears
to be consistent with our knowledge on Conffusion as the process of minimizing the upper and lower
intervals such that only α = 0.1 of the pixels fall outside of the interval should increase our coverage
closer to 1− α = 0.9.

Lower Bound Upper Bound Ground Truth Interval Size

Figure 5: The bounds for SR extracted via N-Conffusion. The left and right columns correspond with the lower
and upper bounds of the interval, respectively, and the rightmost column contains the interval size (the difference
between the lower and upper bounds).

In Figure 5, we apply N-Conffusion to generate lower and upper bounds for several images in the
test set. We can see that this approach provides meaningful bounds, covering a wide range when
needed. Examining the interval sizes, we observe that regions with higher frequency data correspond
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to wider bounds and higher model uncertainty. Thus, N-Conffusion constructs the tightest intervals
while maintaining realistic-looking bounds.

4.2 Benchmark Analysis
Figure 6 compares sample outputs from each model. Qualitatively, the results show that deep learning
models—most noticeably the SR3 and WiREDiff—produce smoother outputs with small-scale details.
Diffusion models have higher fidelity than traditional CNN methods because by iteratively denoising
samples, some noise may remain to emulate the high frequency features of the ground truth data.
While the SRCNN produces outputs that have sharper structures, the range of wind speed values is
inaccurate relative to those generated by the diffusion models. We observe that the wind speeds in
the diffusion outputs are dynamically compressed (i.e. the predictions are between a more limited
range of values). The output from the SR3 smooths out some high frequency features as compared to
the WiREDiff because this result is obtained by averaging over a large number of diffusion outputs.

SRCNN SR3 WiREDiffBicubicLR Input Ground Truth

ua

va

0.242/0.351 0.183/0.324 0.088/0.107 0.053/0.093

0.198/0.362 0.134/0.324 0.091/0.136 0.022/0.102

00

-20

m
/s

0

-20

m
/s

Figure 6: A comparison of wind (top) and solar (bottom) outputs from each model, with reported MSE/MAE
values. While the outputs of current models are pixelated (bicubic) or high-contrast (SR CNN) our contributed
diffusion model is the most accurate. The WiREDiff output has slightly more higher frequency details than the
SR3.

To assess the ability of each model to accurately recreate the ground truth data, we applied data
similarity metrics such as normalized mean-squared error (MSE) and mean absolute error (MAE).
Table 2 below shows the average values of each metric across all test wind data fields for each model.
All deep learning methods assessed outperform bicubic interpolation. Both diffusion models sample
noise in the forward process by preserving some of the original input signal, which may drive outputs
to more closely represent the ground truth data. The WiREDiff outperforms the SR3 in terms of both
metric values.

Model MSE MAE
WiREDiff 0.043 0.091
SR3 0.082 0.11
SRCNN 0.15 0.31
Bicubic 0.21 0.36

Table 2: Summary of Average Metric Values. The diffusion models we introduce to this field are most accurate,
with the WiREDiff achieving the best performance.

However, data similarity metrics are limited in scope and do not offer a comprehensive method of
evaluating wind data fields as they cannot capture the ability to replicate high-frequency features.
Thus, we validated the super-resolved wind speed outputs by generating kinetic energy spectra for
each model which measure the distribution of energy across the various wavenumbers, k (28; 29).

In Figure 7, energy is conserved in the inertial range of each energy spectrum and cascades at higher
wavenumbers. Bicubic interpolation and the SRCNN perform visibly worse than the WiREDiff in
capturing high-frequency data consistent with turbulence theory. The WiREDiff deviates the least
from the energy spectrum of the ground truth data, followed closely by the SR3, which suggests that
diffusion-based wind downscaling approaches most successfully learn physical relationships across
various frequencies that classical techniques are less capable of recreating.

6



k (wavenumber)

Ground Truth

WiREDiff
SR3
SR CNN
Bicubic

LR Input

10-1

10-2

10-4

10-3

101 102

K
in

et
ic

 E
ne

rg
y

Figure 7: Kinetic energy spectra for the data fields corresponding to each HR output, averaged over all wind test
data. The WiREDiff most closely matches the turbulent physics of the ground truth data.

5 Discussion and Future Works

These results indicate that diffusion-based models have significant applications in climate scenarios,
as they more accurately and reliably generate results that match the spectral dynamics of the ground
truth than traditional CNNs or interpolation techniques. In particular, our proposed model, the
WiREDiff, demonstrates promising improvements upon standard SR techniques. When compared
with averaging the distribution of SR3 outputs, the WiREDiff approach is less computationally
expensive—inference can be accomplished with a single forward diffusion pass as opposed to running
inference multiple times and averaging the generated outputs. Additionally, our benchmarking results
show that the WiREDiff generates the most accurate and physically realistic SR data fields. We
suspect that the WiREDiff model may outperform the SR3 model because N-Conffusion produces
well-defined lower and upper bounds for the confidence interval of each pixel. Averaging out the
lower and upper bounds provides less room for error, so on average across all the pixels, we are
producing consistently smaller errors. Without this calibration, the SR3 model has higher tendencies
for outliers that stray further away from the true model.

To better determine the success of diffusion models in super-resolving wind speeds, it is important
that in future works, we extend the benchmark to other classes of SR models. In particular, we aim to
examine the potential of generative adversarial networks (GANs) (30) and different stochastic SR
techniques such as variational auto-encoders (VAEs) (31) and normalizing flows (32). Validating
these models on data outside of NREL’s WIND Toolkit and NSRDB will also widen the scope of this
study and evaluate their generalization to various geographic locations and timespans. In the context
of climate change, augmenting more recent data to our training and validation dataset may improve
generalizability in predicting fluctuations in wind speeds across longer periods of time.

While traditional super resolution (SR) techniques can boost model granularity by minimizing pixel-
level accuracy, their outputs may not capture the underlying physical processes at work. In Figure 7,
while the WiREDiff outperformed the simpler approaches included in the benchmark, there is much
room for improvement in recreating the energy spectra of the ground truth data. The physics-informed
neural network for SR (PINNSR) demonstrated the potential for incorporating a physics-based loss
in diffusion models to produce realistic outputs that preserve the laws of turbulent flow and kinetic
energy (33; 34). Extending this methodology to the domain of wind speed predictions may result
in improved spatial SR performance with SR3 and WiREDiff. One potential implementation for a
kinetics-based loss function could compute the Kullback-Leibler (KL) divergence between the true
posterior kinetic energy distribution and that of an SR model (35), averaged over all wavenumbers
k. Incorporating this term in the training objective of SR3 or other SR models may drive outputs to
be more physically consistent with the ground truth data in the kinetic energy spectra generated in
Figure 7.
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In line with using conformal prediction in diffusion models, future exploration may experiment
with applying quantile regression on partially diffused samples (i.e. in an earlier intermediate
step of the denoising process as opposed to the final step) to drive final outputs to fall within a
tighter confidence interval. Additionally, designing a model to super-resolve spatiotemporally using
conformal timeseries forecasting may more comprehensively improve the physical fidelity of outputs
across timesteps and be more applicable to power grid planning than single-frame SR (36).

6 Conclusion
In this paper, we introduce and evaluate diffusion methods on national wind data. We introduce
conformal quantile regression methodologies to produce SR outputs by averaging the upper and
lower bounds of the interval of potential wind speed values. Comprehensive experimental results
demonstrate how this approach outperforms traditional approaches to SR with respect to accuracy and
physical fidelity. The benchmarking assessments show the qualitative and quantitative performance
and limitations of the model proposed. Our GitHub repository1 provides information on how to
access the machine learning-ready dataset of wind speed data fields used in our experiments as well
as all base code for training the WiREDiff and running evaluations on the model outputs.
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